
220 / 319: Recursion
The Art of Self Reference

https://en.wikipedia.org/

Department of Computer Sciences

University of Wisconsin-Madison

https://en.wikipedia.org/

Hofstadter's Law: “It always takes longer than you expect, even when

you take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

Goal: use self-reference is a meaningful

way

good advice for CS assignments!

Hofstadter's Law: “It always takes longer than you expect, even when

you take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

mountain: “a landmass that projects conspicuously above its

surroundings and is higher than a hill”

hill: “a usually rounded natural elevation of land lower than a

mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful

way

https://en.wikipedia.org/wiki/Circular_definition

Learning Objectives

Define recursion and be able to identify

• base case

• recursive case

• infinite recursion

Explain why data structures lists and dicts can be recursively defined

• What is recursive code?

Trace a recursive function

• involving numeric computation

• involving nested data structure

Write a recursive function that processes a nested list

Read Think Python
✦ Ch 5: “Recursion” through “Infinite Recursion”

✦ Ch 6: “More Recursion” through end

What is Recursion?

Recursive definitions

• Contain the term in the body

• Dictionaries, mathematical definitions, etc

A number x is a positive even number if:

•x is 2

OR

•x equals another positive even number plus two

What is Recursion?

Recursive structures may refer to structures of the same type

• data structures or real-world structures

rowsrows = [

[“A”, [1, 2]],

[“B”, [3, 4, 5]],

[“C”, [6, 7]]

] “A” “B” “C”

1 2 3 4 6 75

Recursive structures are EVERYWHERE!

{

“name”: “alice”,

“grade”: “A”,

“score”: 96,

“exams”: {

“midterm”: {“points”:94,

“total”:100},

“final”: {“points”: 98,

“total”: 100}

}

}

nature files formats

Example: Trees (Direct Recursion)

Term: branch

Definition: wooden stick, with an

end splitting into other branches,

OR terminating with a leaf
?

? ?
?

Term: branch

Definition: wooden stick, with an

end splitting into other branches,

OR terminating with a leaf

Example: Trees (Direct Recursion)

? ? ?
? ?

Example: Trees (Direct Recursion)

Term: branch

Definition: wooden stick, with an

end splitting into other branches,

OR terminating with a leaf

Example: Trees (Direct Recursion)

Term: branch

Definition: wooden stick, with an

end splitting into other branches,

OR terminating with a leaf

trees are finite:

eventual base case

allows completion

recursive case allows

indefinite growth

base case (leaf)

recursive case (branch)

Example: Directories (aka folders)

Term: directory

Definition: a collection of files and directories

recursive because def contains term

file system tree

Example: Directories (aka folders)

Term: directory

Definition: a collection of files and directories

recursive because def contains term

file system tree

Example: Directories (aka folders)

Term: directory

Definition: a collection of files and directories

recursive because def contains term

file system tree

Example: Directories (aka folders)

Term: directory

Definition: a collection of files and directories

recursive because def contains term

Recursive Code

What is it?

• A function that calls itself

f

call

def f():
other code
f()
other code

Recursive Code

What is it?

• A function that calls itself

Motivation: don’t know how big the data is before execution

• Need either iteration or recursion

• In theory, these techniques are equally powerful

Why use recursion?

• simple and elegant solution

• recursive code corresponds to recursive data

• reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

https://texastreesurgeons.com/services/tree-removal/

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

CS220 students

in the front row

Professor with a question

Recursive Student

Counting

Constraints:

• You can only talk to the

student behind / in front of you

What should each student ask

the person behind them?

How many students

are in this column?

Example from https://courses.cs.washington.edu/courses/cse143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Reframing is the hardest part!

Recursive Student

Counting

https://courses.cs.washington.edu/courses/cse143/17au/

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student

Counting

how many are behind you?

how many are behind you?

how many are behind you?

how many are behind you?

how many are behind you?

https://courses.cs.washington.edu/courses/cse143/17au/

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Observations:

• Each student runs the same

“code”

• Each student has their own

“state”
Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student

Counting

23

22

21

20

24

Aha! Clearly there must

be 25 students in this

column

https://courses.cs.washington.edu/courses/cse143/17au/

Practice: Reframing Factorials

N! = 1 x 2 x 3 x … x (N-2) x (N-1) x N

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

Goal: work from examples to get to recursive code

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

Goal: work from examples to get to recursive code

simplest example

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

look for patterns that allow

rewrites with self reference

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! =

2! =

3! =

4! =

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120
def fact(n):

pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! =

2! =

3! =

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120
def fact(n):

pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! =

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120
def fact(n):

pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120
def fact(n):

pass # TODO

don’t need a pattern

at the start

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120
def fact(n):

pass # TODO

convert self-referring examples

to a recursive definition

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is ???? for N > 1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N > 1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
if n == 1:

return 1

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N > 1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N > 1

Rule 1: Base case should always be defined and be terminal

Rule 2: Recursive case should make progress towards base case

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N > 1

Let’s “run” it!

Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

frames to the rescue!

How does Python keep

all the variables separate?

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but

multiple invocations share code.

Variables for an invocation exist in a frame

• frames are stored in the stack

• one invocation is active at a time: its frame is on the top of stack

• multiple frames at the same time for the multiple invocations of

the same function

frame: stack:
fact

variables fact
fact
fact
global

global

time
0 1 2 3 4 5 6

Current

Runtime Stack

call fact(3)

Deep Dive:

Runtime Stack
def fact(n):

if n == 1:
return 1

p =fact(n-1)
return n * p

global global

fact

n=3

time
0 1 2 3 4 5 6

new, active frame

Current

Runtime Stack

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

time
0 1 2 3 4 5 6

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

time
0 1 2 3 4 5 6

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1 return 1 (base case)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=

return 1 (base case)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

return 1 (base case)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=2

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=2

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

return 6 (n*p)

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=2

global

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

return 6 (n*p)

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

“Infinite” Recursion Bugs

What happens if:

1. factorial is called with a negative number?

never

terminates

-1

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

“Infinite” Recursion Bugs

What happens if:

1. factorial is called with a negative number?

2. we forgot the “n == 1” check?

3

global

fact

n=3

fact

n=2

fact

n=1

fact

n=0

fact

n=-1

never

terminates

Let’s code

Example: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:
• A number

• A list of numbers and lists (which contain other numbers and lists)

Output:
• True if there’s a list containing the number, else False

Example:

>>> contains(3, [1,2,[4,[[3],[8,9]],5,6]])

True

>>> contains(12, [1,2,[4,[[3],[8,9]],5,6]])

False

Example: Pretty Print

Goal: format nested lists of bullet points

Input:
• The recursive lists

Output:
• Appropriately-tabbed items

Example:

>>> pretty_print([“A”, [“1”, “2”, “3”,],

“B”, [“4”, [“i”, “ii”]]])

*A

*1

*2

*3

*B

*4

*i

*ii

Practice: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:
• A number

• A list of numbers and lists (which contain other numbers and lists)

Output:
• True if there’s a list containing the number, else False

Example:

>>> contains(3, [1,2,[4,[[3],[8,9]],5,6]])

True

>>> contains(12, [1,2,[4,[[3],[8,9]],5,6]])

False

https://xkcd.com/244/

“To understand recursion, you need to understand recursion.”

(Meena)

https://hotsigns.net/two-thumbs-up-emoji-247-decal_p_302.html

https://xkcd.com/244/
https://hotsigns.net/two-thumbs-up-emoji-247-decal_p_302.html

Summary: Recursive Information

What is a recursive definition/structure?

• Definition contains term

• Structure refers to others of same type

• Example: a dictionary contains dictionaries (which may contain...)

recursive case

base case

Summary: Recursive Code

What is recursive code?

• Function that sometimes itself

Why write recursive code?

• Real-world data/structures are recursive; intuitive for code to reflect

data

Where do computers keep local variables for recursive calls?

• In a section of memory called a “frame”

• Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?

• Calls keep pushing more frames

• Exhaust memory, throw RecursionError

	Slide 1: 220 / 319: Recursion The Art of Self Reference
	Slide 2: Goal: use self-reference is a meaningful way
	Slide 3: Goal: use self-reference is a meaningful way
	Slide 4: Learning Objectives
	Slide 5: What is Recursion?
	Slide 6: What is Recursion?
	Slide 7: Recursive structures are EVERYWHERE!
	Slide 8: Example: Trees (Direct Recursion)
	Slide 9: Example: Trees (Direct Recursion)
	Slide 10: Example: Trees (Direct Recursion)
	Slide 11: Example: Trees (Direct Recursion)
	Slide 12
	Slide 13: Example: Directories (aka folders)
	Slide 14: Example: Directories (aka folders)
	Slide 15: Example: Directories (aka folders)
	Slide 16: Example: Directories (aka folders)
	Slide 17: Recursive Code
	Slide 18: Recursive Code
	Slide 19: Recursive Student Counting
	Slide 20: Recursive Student Counting
	Slide 21: Recursive Student Counting
	Slide 22: Recursive Student Counting
	Slide 23: Recursive Student Counting
	Slide 24: Practice: Reframing Factorials
	Slide 25: Example: Factorials
	Slide 26: Example: Factorials
	Slide 27: Example: Factorials
	Slide 28: Example: Factorials
	Slide 29: Example: Factorials
	Slide 30: Example: Factorials
	Slide 31: Example: Factorials
	Slide 32: Example: Factorials
	Slide 33: Example: Factorials
	Slide 34: Example: Factorials
	Slide 35: Example: Factorials
	Slide 36: Example: Factorials
	Slide 37: Example: Factorials
	Slide 38: Example: Factorials
	Slide 39: Tracing Factorial
	Slide 40: Deep Dive: Invocation State
	Slide 41: Deep Dive: Runtime Stack
	Slide 42: Deep Dive: Runtime Stack
	Slide 43: Deep Dive: Runtime Stack
	Slide 44: Deep Dive: Runtime Stack
	Slide 45: Deep Dive: Runtime Stack
	Slide 46: Deep Dive: Runtime Stack
	Slide 47: Deep Dive: Runtime Stack
	Slide 48: Deep Dive: Runtime Stack
	Slide 49: Deep Dive: Runtime Stack
	Slide 50: Deep Dive: Runtime Stack
	Slide 51: Deep Dive: Runtime Stack
	Slide 52: Deep Dive: Runtime Stack
	Slide 53: Deep Dive: Runtime Stack
	Slide 54: Deep Dive: Runtime Stack
	Slide 55: “Infinite” Recursion Bugs
	Slide 56: “Infinite” Recursion Bugs
	Slide 57: Let’s code
	Slide 58: Example: Recursive List Search
	Slide 59: Example: Pretty Print
	Slide 60: Practice: Recursive List Search
	Slide 61
	Slide 62: Summary: Recursive Information
	Slide 63: Summary: Recursive Code

