220/ 319: Recursion

The Art of Self Reference
220/ 319: Recursion

The Art of Self Reference

220/ 319: Recursion
The Art of Self Reference
220/319 Recursion
De p tm nt of Co mpt S
University of Wis
Department of Computer Sciences =~
University of Wisconsin-Madison

Department of Computer Sciences
University of Wisconsin-Madison

https://en.wikipedia.org/

Goal: use self-reference Is a meaningful
way

Hofstadter's Law: “It always takes longer than you expect, even when
you take into account Hofstadter's Law.”

(From Godel, Escher, Bach)

good advice for CS assignments!

Goal: use self-reference Is a meaningful
way

mountain: “a landmass that projects conspicuously above its
surroundings and is higher than a hill”

hill: "a usually rounded natural elevation of land lower than a
mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular _definition

https://en.wikipedia.org/wiki/Circular_definition

Learning Objectives

Define recursion and be able to identify
base case
recursive case
Infinite recursion

Explain why data structures lists and dicts can be recursively defined
- What is recursive code?

Trace a recursive function
- Involving numeric computation
- Involving nested data structure

Write a recursive function that processes a nested list

Read Think Python
+ Ch 5: "Recursion” through “Infinite Recursion”

+ Ch 6: "More Recursion” through end

What Is Recursion?

Recursive definitions
- Contain the term in the body
- Dictionaries, mathematical definitions, etc

A number X IS a positive even number If:

XIS 2
OR

X equals another positive even number plus two

What Is Recursion?

Recursive structures may refer to structures of the same type
. data structures or real-world structures

Yrows = [roOws
A”, 1, 211,

BT, (3, 4, o1,
CT, Lo, 1]

Recursive structures are EVERYWHERE!

nature

files

“‘name”: “alice”,
“grade”: “A”,
“score”: 90,
“exams”: {

“midterm”: {“points”:94,
“total”:100},

“final”: {“points”: 98,
“total”: 100}

formats

Example: Trees (Direct Recursion)

erm: branch

Definition: wooden stick, with an
end splitting into other branches,
OR terminating with a leaf

Example: Trees (Direct Recursion)

erm: branch

Definition: wooden stick, with an
end splitting into other branches,
OR terminating with a leaf

Example: Trees (Direct Recursion)

erm: branch

Definition: wooden stick, with an
end splitting into other branches,
OR terminating with a leaf

Example: Trees (Direct Recursion)

erm: branch

Definition: wooden stick, with an
end splitting into other branches,
OR terminating with a leaf

\ recursive case allows
trees are finite: indefinite growth
eventual base case
allows completion

‘ base case (leaf)

recursive case (branch)

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Definition: a collection of files and directories

© o | directoryA
£ OO (on 2%~ £ v

Favorites

ill

L
%

L4
L

+* Dropbox

@ AirDrop T T%T T

-'.% All My Files 1.txt 2.txt 3.txt directoryB directoryB2
¢ iCloud Drive

:.fﬂ'-; Applications

& Desktop

™ Dacuments

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Definition: a collection of files and directories

@O e Pl directoryA

£ OO (on 2%~ £ v

ill
<
%
¢
3

Favorites

il
+2 Dropbox

@ AirDrop T T%T T
@ All My Files 1.txt 2.txt 3.txt directoryB directoryB2

Y iCloud Drive
?“ﬂ"{ Applications ‘ ‘ ‘ \ W
& Desktop

I'Eﬁ Documents

file system tree

Example: Directories (aka folders)

erm: directory

N

recursive because def contains term

N

Definition: a collection of files and directories

| NON) directoryB
< Bl=o o = #%. = v Q
. Favorites
4 32 Dropbox]
@ AirDrop
Favoril & All My Files readme.txt
il
=¥ | & iCloud Drive
@ /3 Applications
=) | B Desktop directoryB directoryB2
) Documen ts
¢Y iCloud Drive

3 Applications

& Desktop
Iﬂﬁ Documents

file system tree

Example: Directories (aka folders)

Definition: a collection of files and directories

erm: directory

N

N

| NON) directoryB
<> El= mao_=mv | . = e Q
@ | NON) directoryC
Favorites
- — 500 P o
£ 32 Dropbox < = OO0 Ianj 538 v i & v =V "
_ @) Airbrop Favorites
Favorll =5 A\ My Files B
- <2
-

¢ iCloud Drive
/3 Applications
) Desktop

m 3

™ Documents

¢Y iCloud Drive
3 Applications
&2 Desktop

Iﬂﬁ Documents

@ AirDrop
£ All My Files
< iCloud Drive
A: Applications
=) Desktop

Iﬂﬁ Documents

keep-going

TXT

not-there-yet.txt

file system tree

recursive because def contains term

directoryB2

Recursive Code

What is it?
- A function that calls itself

def f():
f # other code

f()
\/ # other code

call

Recursive Code

What is it?
. A function that calls itself

Motivation: don’t know how big the data is before execution
- Need either iteration or recursion

- In theory, these techniques are equally powerful

Why use recursion?

- simple and elegant solution

. recursive code corresponds to recursive data
- reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

https://texastreesurgeons.com/services/tree-removal/

Recursive Student
Counting

OOOOC
S P OO00C

Professor with a question * 3;3/

Recursive Student
Counting

Constraints:

- You can only talk to the
student behind / in front of you

What should each student ask
the person behind them?

Example from https://courses.cs.washington.edu/

OOOOO
OOOOO

How many students
are in this column?

courses/cse143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe guestion as “how
many students are behind you?”

Reframing Is the hardest part!

Process:
If nobody Is behind you: say O
else: ask them, say their answer+1

how many are behind you? <

Example from https://courses.cs.washington.edu/courses/cse143/17au/

KOMOO

https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

how many are behind you?

how many are behind you?

Strategy: reframe guestion as “how
many students are behind you?”

how many are behind you?

how many are behind you?

Process:
If nobody Is behind you: say O
else: ask them, say their answer+1 how many are behind you?

AWAYAYAYA

KOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe guestion as “how
many students are behind you?”

Process:
If nobody Is behind you: say O
else: ask them, say their answer+1

Observations:

- Each student runs the same
“code’

- Each student has their own
“state”

Example from https://courses.cs.washington.edu/cours

Aha! Clearly there must
be 25 students in this
column

es/csel143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Practice: Reframing Factorials

NI=1x2x3x...Xx(N-2)x(N-1) x N

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
31 = 1%2%3 = 6
ivo= lrarsra =24 4. Python Code:
51 = 1%2*x3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

Goal: work from examples to get to recursive code

Example: Factorials

1. Examples: 3. Recursive Definition:
1!' = 1 simplest example
21 = 1*2 = 2
31 = 1%2%3 = 6
dro= 1r2x3xa = 24 4. Python Code:
51 = 1%2%3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

Goal: work from examples to get to recursive code

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
31 = 1%2%3 = 6
ivo= lrarsra =24 4. Python Code:
51 = 1%2*x3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

look for patterns that allow
rewrites with self reference

Example: Factorials

1. Examples: 3. Recursive Definition:

1! =1

21 = 1%2 = 2

31 = 1*2%3 = 6

47 = 1¥2%3%4 = 24 4. Python Code:
&1*2*3*4*5 = 120

def fact(n):

2. Self Reference: pass # TODO

1! =

21 =

3! =

4! =

5! = 41 *= 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
3! = 1*¥2*3 = ¢
iv = 1rensrd = 2d 4. Python Code:
51 = 1%2*x3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 =
21 =
31 =
41 = 31 * 4

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
31 = 1%2*%3 = ¢
@i o= lrersra = 24 4. Python Code:
5! = 1*2*x3*x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 =
21 = 11 * 2
31 = 21 * 3
41 = 31 * 4
51 = 41 * §

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1
21 = 1%*2 = 2
31 = 1*2*3 = 6
dro= 1rer3ra = 24 4. Python Code:
51 = 1*2%3%4%5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 = 1 don’t need a pattern
o1 = 11 = o atthe start
31 =21 * 3
41 = 31 * 4
51 = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1 =1 convert self-referring examples
21 = 1*2 = 2 to a recursive definition
31 = 1#%*2*3 = 6
4l = 1*2x3=a = 24 4. Python Code:
51 = 1*2*3%4*%5 = 120
def fact(n):
2. Self Reference: pass # TODO
1! =1
21 = 1! * 2
31 =21 * 3
41 = 3! * 4
51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:

11is1 @

10 =1
21 = 1%2 = 2
31 = 1%2*3 = 6
ivo= lrarsra =24 4. Python Code:
5! = 1*2*x3*x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

1 =1

20 =11 * 2
3! = 21 * 3
41 = 31 * 4
5! = 41 *= 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1 11is1@

21 = 1%2 = 2 N!is 2?2?27 for N > 1
31 = 1*2%3 = 6

i 0= lx2x3xa = 24 4. Python Code:

51 = 1*2%3%4*5 = 120

def fact(n):

2. Self Reference: pass # TODO

i S
21 = 11 * 21
31 =21 % 3i
41 = 31 * 4
51 = 41 % 5 i

Example: Factorials

1. Examples: 3. Recursive Definition:

11 = 1 11is1 @
N!is (N=1)! * N forN>1 /

21 = 1%2 = 2
31 = 1%2*3 = 6
ivo= lrarsra =24 4. Python Code:
51 = 1%2*x3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

i S
21 = 11 * 21
31 =21 % 3i
41 = 31 * 4
51 = 41 % 5 i

Example: Factorials

1. Examples: 3. Recursive Definition:

11 = 1 11is1 @
N!is (N=1)! * N forN>1 /

21 = 1%2 =
31 = 1%2%3 = 6
dro= 1r2x3xa = 24 4. Python Code:
51 = 1%2%3%4%5 = 120
def fact(n):
2. Self Reference: [n==1: /
return 1
11 =1
21 = 11 * 2
31 = 21 * 3
41 = 31 * 4
51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1 11is1 @
21 = 1%D = D N!iS(N—l)!*NforN>1/
31 = 1%2%3 = 6
dro= 1r2x3ra = 24 4. Python Code:
51 = 1%2%3%4*5 = 120

def fact(n):
2. Self Reference: fn==1: /

return 1

11 =1 o =fact(n-1) /
21 = 11 * 2 returnn*p
31 = 2! % 3
41 = 31 * 4
51 = 4! * 5

Rule 1: Base case should always be defined and be terminal
Rule 2: Recursive case should make progress towards base case

Example: Factorials

1. Examples: 3. Recursive Definition:
10 =1 11is1 @
21 = 1%D = D N!iS(N—l)!*NforN>1/
3! = 1*2*3 = 6
dro= 1r2x3xa = 24 4. Python Code:
51 = 1*2%3%4*5 = 120

def fact(n):
2. Self Reference: tn==1: /

return 1

11 =1 o =fact(n-1) /
21 = 11 * 2 returnn*p
31 =21 * 3
41 = 31 * 4 Let’s “run” it!
5! = 41 * 5

Tracing Factorial

def fact(n):

ifn==1: ‘

return 1

o =fact(n-1) /

returnn *p

How does Python keep
all the variables separate?

frames to the rescue!

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but
multiple invocations share code.

Variables for an invocation exist in a frame
- frames are stored In the stack
- one invocation is active at a time: its frame is on the top of stack

- multiple frames at the same time for the multiple invocations of
the same function

I | fact
frame; | variables stack: fact
fact
global

Deep DIVG def fact(n):

ifn==1:

Runtime Stack eturn 1

=fact(n-1)
returnn*p

call fact (3)

Current
Runtime Stack

v

global

time

Deep DIVG * def fact(n):

. ifn==1;
Runtime Stack et
p =fact(n-1)
returnn*p
Current
Runtime Stack
fact h
n=3 new, active frame
global global g

0 1 2 3 4

time

Deep Dive:

def fact(n):
. ifn==1:
Runtime Stack return 1
o =fact(n-1)
returnn*p
fact
n=3
p:
global global
0 1 3 4

time

Deep Dive:

def fact(n):
. ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=2
fact fact
n=3 n=3
P= P=
global global global
0 1 2 3 4

time

Deep Dive:

def fact(n):
. ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=2
p:
fact fact
n=3 n=3
P= P=
global global global
0 1 2 3 4

time

Deep DIVG * def fact(n):

. ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=1
fact fact
n=>2 n=>2
P= P=
fact fact fact
n=3 n=3 n=3
P= P= P=
global global global global

0 1 2 3 4

time

Deep DIVG de.f fact(n):
Runtime Stack P ot

return 1
o =fact(n-1)
returnn * p
fact
n=1 return 1 (base case)
fact fact
n=2 n=2
P= P=
fact fact fact
n=3 n=3 n=3
P= P= P=
global global global global

0 1 2 3 4 o

time

Deep DIVG def fact(n):

. ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2
P= P= P=
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=
global global global global global

0 1 2 3 4 o

time

Deep DIVG def fact(n):

. ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2
p= p= p=1
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=
global global global global global

0 1 2 3 4 o

time

Deep Dive:

Runtime Stack

def fact(n):

ifn==1:;
return 1
o =fact(n-1)

* returnn * p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n==2 return 2 (n*p)
p= p= p=1
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=
global global global global global
0 1 2 3 4 <

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn * p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p: p: p:1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3
p: p: p: p: p:
global global global global global global
0 1 2 3 4 5 o

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn * p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p: p: p:1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3
p= p= p= p= p:2
global global global global global global
0 1 2 3 4 5 o

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn * p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p: p: p:1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p:2 1
global global global global global global
0 1 2 3 4 < o

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn * p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p: p: p:1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p:2 1
global global global global global global global
0 1 2 3 4 5 ®

time

“Infinite” Recursion Bugs

What happens If:
1. factorial is called with a negative number?

]
def fact(n):
ifn==1:
return 1

p =fact(n-1)
returnn*p \
never

terminates

“Infinite” Recursion Bugs

What happens If:

1. factorial is called with a negative number?

2. we forgot the "n == 1" check?

3
def fact(n):
h==21
—retn-t
o =fact(n-1)
returnn*p

never
terminates

fact

Let's code

Example: Recursive List Search

Goal: does a given number exist In a recursive structure?

Input:
®* Anumber
® Alist of numbers and lists (which contain other numbers and lists)

Output:
®* True if there's a list containing the number, else False

Example:

>>> contains (3, [1,2,[4,[[31,108,9]1,5,611)
True

>>> contains (12, [1,2,104,1103]1,18,911,5,61])
False

Example: Pretty Print

Goal: format nested lists of bullet points

Input:
® The recursive lists

Output:
®* Appropriately-tabbed items
Example:

>>> pretty_print ([\\A/I, [\\1//, \\2//, \\3//,] ,
\\B/I, [\\4//, [\\j—//, \\ij—//]]])

*A
*1
*2
*3

*B
x4

Practice: Recursive List Search

Goal: does a given number exist In a recursive structure?

Input:
®* Anumber
® Alist of numbers and lists (which contain other numbers and lists)

Output:
®* True if there's a list containing the number, else False

Example:

>>> contains (3, [1,2,[4,[[31,108,9]1,5,611)
True

>>> contains (12, [1,2,104,1103]1,18,911,5,61])
False

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
GTART WHITTLING DICE AND
GET OUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

YOUR PARTY ENTERS THE TAVERN.

https://xkcd.com/244/

(Meena)

https://hotsigns.net/two-thumbs-up-emoji-247-decal p 302.html

https://xkcd.com/244/
https://hotsigns.net/two-thumbs-up-emoji-247-decal_p_302.html

Summary: Recursive Information

What Is a recursive definition/structure?

- Definition contains term

. Structure refers to others of same type

- Example: a dictionary contains dictionaries (which may contain...)

/ recursive case

‘ base case

Summary: Recursive Code

What is recursive code?
- Function that sometimes itself

Why write recursive code?

- Real-world data/structures are recursive; intuitive for code to reflect
data

Where do computers keep local variables for recursive calls?
- In a section of memory called a “frame”
- Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?
- Calls keep pushing more frames
- Exhaust memory, throw RecursionError

	Slide 1: 220 / 319: Recursion The Art of Self Reference
	Slide 2: Goal: use self-reference is a meaningful way
	Slide 3: Goal: use self-reference is a meaningful way
	Slide 4: Learning Objectives
	Slide 5: What is Recursion?
	Slide 6: What is Recursion?
	Slide 7: Recursive structures are EVERYWHERE!
	Slide 8: Example: Trees (Direct Recursion)
	Slide 9: Example: Trees (Direct Recursion)
	Slide 10: Example: Trees (Direct Recursion)
	Slide 11: Example: Trees (Direct Recursion)
	Slide 12
	Slide 13: Example: Directories (aka folders)
	Slide 14: Example: Directories (aka folders)
	Slide 15: Example: Directories (aka folders)
	Slide 16: Example: Directories (aka folders)
	Slide 17: Recursive Code
	Slide 18: Recursive Code
	Slide 19: Recursive Student Counting
	Slide 20: Recursive Student Counting
	Slide 21: Recursive Student Counting
	Slide 22: Recursive Student Counting
	Slide 23: Recursive Student Counting
	Slide 24: Practice: Reframing Factorials
	Slide 25: Example: Factorials
	Slide 26: Example: Factorials
	Slide 27: Example: Factorials
	Slide 28: Example: Factorials
	Slide 29: Example: Factorials
	Slide 30: Example: Factorials
	Slide 31: Example: Factorials
	Slide 32: Example: Factorials
	Slide 33: Example: Factorials
	Slide 34: Example: Factorials
	Slide 35: Example: Factorials
	Slide 36: Example: Factorials
	Slide 37: Example: Factorials
	Slide 38: Example: Factorials
	Slide 39: Tracing Factorial
	Slide 40: Deep Dive: Invocation State
	Slide 41: Deep Dive: Runtime Stack
	Slide 42: Deep Dive: Runtime Stack
	Slide 43: Deep Dive: Runtime Stack
	Slide 44: Deep Dive: Runtime Stack
	Slide 45: Deep Dive: Runtime Stack
	Slide 46: Deep Dive: Runtime Stack
	Slide 47: Deep Dive: Runtime Stack
	Slide 48: Deep Dive: Runtime Stack
	Slide 49: Deep Dive: Runtime Stack
	Slide 50: Deep Dive: Runtime Stack
	Slide 51: Deep Dive: Runtime Stack
	Slide 52: Deep Dive: Runtime Stack
	Slide 53: Deep Dive: Runtime Stack
	Slide 54: Deep Dive: Runtime Stack
	Slide 55: “Infinite” Recursion Bugs
	Slide 56: “Infinite” Recursion Bugs
	Slide 57: Let’s code
	Slide 58: Example: Recursive List Search
	Slide 59: Example: Pretty Print
	Slide 60: Practice: Recursive List Search
	Slide 61
	Slide 62: Summary: Recursive Information
	Slide 63: Summary: Recursive Code

