[220 / 319]
Objects + References

Meena Syamkumar
Mike Doescher
Gurmail Singh

Test yourself!

e what is the type of the following? {}
0 -

a dict

G if S is a string and L is a list, which line definitely fails?
G S [_1] — " . n

‘I” L[len(S)] = S

G which type is immutable?

list

dict

Objects and References

stack : heap

note: quotes for strings
not shown (to simplify)

thi$ end of/an
arrow is an/object

global airbnb

this end of an
arrow is a reference:

name B
rm_id 389

date | 01/04/2022

worksheet example from last time

reviews % sk

Observations
|. objects have a "life of their own" beyond variables or even function frames
2. here there are dict and list objects (others are possible)
3. references show up two places: as variables and values in data structures

Objects and References

stack : heap

/ / N N ~
5 thi€ end of/an list

arrow is an/object

Frames:

global airbnb

this end of an
arrow is a reference:

name ~ | B
rm_id ~ | >389
worksheet example from last time .clate /_/_\ "01/04/2022"
reviews \| \ ‘ ‘

dict \ ikt \

| e " Wagskn
Observations

|. objects have a "life of their own" beyond variables or even function frames
2. here there are dict and list objects (others are possible)

3. references show up two places: as variables and values in data structures
4. technically ints and strs (and all values) are objects too in Python...

Objects and References

stack : heap

i / / N N
Frames: : thi§ end of/an list

arrow is an/object

global airbnb

this end of an
arrow is a reference:

Name

rm_id

——
——

date [T "01/04/2022"
——

worksheet example from last time

reviews

|

dict \ It
g "y
Questions
|. why do we need this more complicated model?
2. how can we create new types of objects!?

3. how can we copy objects to create new objects?

\

II**"

Today's Outline

@Iet's evolve our mental model of state!
References o

® Mental Model for State (v2)
® examples and bugs: accidental argument modification

New Types of Objects
® tuple
® namedtuple

Motivation for objects and references
®* why do we need this new mental model?

Mental Model for State (vl)

Common mental model
Code: ® equivalent for immutable types
® PythonTutor uses for strings, etc

X “hello”
y = X

Issues
® incorrect for mutable types

y += “ world” °
! ignores performance

State:

X |hello

y |hello world

note: we're not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v2)

Code:

* x = “hello”
y = X

y += “ world”

State:

references objects

note: we're still not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v2)

Code:
X = “hello”
* y = X
y += “ world”
State:
references
X

—
L

any box with an arrow is a reference
(variables are one kind of reference)

objects

“hello”

Mental Model for State (v2)

Code:
X = “hello”
y = X
* y += “ world”
State:
references E objects
X : — “hello”

Mental Model for State (v2)

Code:
X = “hello”
y = X
* y += “ world”
State:
references E objects
X : — “hello”

/

|

|

|

: “hello world”
|
|

Mental Model for State (v2)

Code:

X “hello”

y

' y += “ world”

State:

1 .
references : objects

1
66 ”»
X : > “hello
1

— ‘“hello world”

Mental Model for State (v2)

Code:

X “hello”

y

' y += “ world” #y

State:

y + “ world”

1 .
references : objects

1
66 ”»
X : > “hello
1

— ‘“hello world”

Revisiting Assignment and Passing Rules for v2

RULE 1 (assignment)

"

y = x # y should reference whatever x references

RULE 2 (argument passing)
def f(v):
pass

f(x) # y should reference whatever x references

How PythonTutor renders immutable types is configurable...

Frames Objects

Global frame

x "hello"

"hello world"

inline primitives but don't nest objects [default] ¥

vl
Code:
X = “"hello”
y = X Frames Objects
4= # n
4 world Global frame str
/_’"heuo"
X
v2 Y f"”\str

"hello world"

render all objects on the heap (Python) =

v

Today's Outline

References

® examples and bugs: accidental argument modification

New Types of Objects
® tuple
® namedtuple

Motivation for objects and references
®* why do we need this new mental model?

References and Arguments/Parameters

Python Tutor always illustrates references with an arrow
for mutable types

Thinking carefully about a few examples will prevent many
debugging headaches...

Example |: reassign parameter

def f(x):
X %= 3
print("f:", x)

num = 10
f(num)
print("after:", num)

interactive

exercises

Example 2: modify list via param

def f(items):
items.append("!!1")
print("f:", items)

words = ['hello', 'world']
f(words)
print("after:", words)

interactive

exercises

Example 3: reassign new list to param

def f(items):
items = items + ["“!!!"]
print("f:", items)

words = ['hello', 'world']
f(words)
print("after:", words)

interactive

exercises

Example 4: in-place sort

def first(items):
return items[0]

def smallest(items):
items.sort()
return items[0]

numbers= [4,5,3,2,1]
print("first:", first(numbers))
print("smallest:", smallest(numbers))

print("first:", first(numbers))

interactive

exercises

Example 5: sorted sort

def first(items):
return items[0]

def smallest(items):
items = sorted(items)

return items[0]

numbers= [4,5,3,2,1]
print("first:", first(numbers))
print("smallest:", smallest(numbers))

print("first:", first(numbers))

interactive

exercises

Today's Outline

References

New Types of Objects
® tuple
® namedtuple

Motivation for objects and references
®* why do we need this new mental model?

Tuple Sequence

nums list [200, 100, 300]

(200, 100, 300)

\ if you use parentheses (round)

instead of brackets [square]
you get a tuple instead of a list

What is a tuple? A new kind of sequence!

Like a list
® for loop, indexing, slicing, other methods

Unlike a list:
® immutable (like a string)

Tuple Sequence

nums list [200, 100, 300]

(200, 100, 300)

X = nums list[2] 300
X = nums tuple[2] oth put BT I
Like a list

® for loop, indexing, slicing, other methods

Unlike a list:
® immutable (like a string)

Tuple Sequence

nums list [200, 100, 300]

(200, 100, 300)

nums 1list[0] = 99 — T~

changes list to

x [0] = 99 ‘\ [99, 100, 300]

Crashes!

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Like a list
® for loop, indexing, slicing, other methods

Why would we ever want immutability?
Unlike a list: |. avoid certain bugs

® immutable (like a string) 2. some use cases require it (e.g., dict keys)

Example: location -> building mapping

buildings = {

'0,0]: “Comp Sci”,
'0,2]: “Psychology”,
'4,0]: “Noland”,
'1,8]: “Van Vleck”

NG

FAILS!

Traceback (most recent call last):
File "test2.py", line 1, in <module>
buildings = {[0,0]: "CS"}
TypeError: unhashable type: 'list'

trying to use X,y coordinates as key

Example: location -> building mapping

buildings = {
(0,0): “Comp Sci”,
(0,2): “Psychology”,
(4,0): “Noland”,
(1,8): “Van Vleck”

} k

trying to use X,y coordinates as key

Succeeds!
(with tuples)

A note on parenthetical characters

type of parenthesis

/

parentheses: (and) »

\\\\\\\\\\\\\‘\\»

list
:::::::::///;;;Lence
<:::::::::\\\jiquence

dict
— dict

brackets:

| and]

braces: {and }

uses

(1+2) * 3

£()

(1,2, 3)

tuple of size |

s[-1]
s[l:-2]

d[Ilonell]

d = {"one":1, "two

{1, 2, 3}

"2}

Today's Outline

References

New Types of Objects

® namedtuple

Motivation for objects and references
®* why do we need this new mental model?

See any bugs! N

people=[
{"Fname": "Alice", "1lname": "Anderson", "age'": 30},
a {"fname": "Bob", "lname": "Baker", "age": 31},
]
n = people[0]
print("Hello " + p["fname"] + " " + p["Llname"])

people=|
("Alice", "Anderson', 30),
("Bob", "Baker", 31),

]

n = people[1]

print("Hello " + pl[1] + " " + pl[2])

Vote: Which is Better Code!?

people=|
{"fname": "Alice", "1lname": "Anderson", "age'": 30},

a {"fname": "Bob", "lname": "Baker", '"age": 31},
]

n = people[0]
print("Hello " + p["fname"] + " " + p["Llname"])

people=|
("Alice", "Anderson'", 30),

Q ("Bob", "Baker", 31),
]

n = people[1]
print("Hello " + pl@] + " " + pl[1])

people=|
{"fname": "Alice", "1lname": "Anderson", "age'": 30},

a {"fname": "Bob", "lname": "Baker", '"age": 31},
]

n = people[0]
print("Hello " + p["fname"] + " "™ + p["Lname"])

people=|
("Alice", "Anderson'", 30),

a ("Bob", "Baker", 31),
]

p = people[1l]
print("Hello " + pl[@] + ™ " + p[1])

from collections import namedtuple
Person = namedtuple("Person', ["fname", "lname", "age"l])

people=|
Person("Alice", "Anderson', 30),
Person('"Bob", "Baker'", 31),

]
D = people[0]
print("Hello " + p.fname + " " + p.lname)

from collections import namedtuple

\ need to import this data struct

/ name of that type creates a new type!

/ name of that type

Person = namedtuple("Person', ["fname", "lname", "age"l])
p = Person("Alice", "Anderson'", 30)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

\ need to import this data struct

/ name of that type creates a new type!

/ name of that type

Person namedtuple('"Person', ["fname", "lname", "age"])

o = Person("Alice", "Anderson", 30)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

\ need to import this data struct

/ name of that type creates a new type!

/ name of that type

Person namedtuple('"Person', ["fname", "lname", "age"])

VRN \ /T N\

n = Person("Alice", "Anderson", 30)

creates a object of type Person (sub type of namedtuple)
(like str (3) creates a new string or 1ist () creates a new list)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"l])

o = Person("Alice", "Anderson", 30)

can use either positional or keyword arguments to create a Person

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"l])

/

p = Person(age=30, fname="Alice", lname="Anderson")

can use either positional or keyword arguments to create a Person

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"l])

p = Person(age=30, Fname="Alice'", lname="Anderson")
crashes

immediately
(good!)

print("Hello " + p.fname + " " + p.1lname)

from collections import namedtuple

Person = namedtuple("Person', ["fname", "lname", "age"l])

p = Person(age=30, fname="Alice", lname="Anderson")

print("Hello " + p.fname + " " + p.1lname)

Today's Outline

References

® motivation
® bugs: accidental argument modification

Today's Outline

References

New Types of Objects

Motivation for objects and references
®* why do we need this new mental model?

Why does Python have the complexity of
separate and 4

Why not follow the original organization we saw
for everything (i.e., boxes of data with labels)?

Reason |: Performance

Code:

X = "this string i1s millions of characters..”

* y = x # this is fast!

State:
references objects
X — “this string is millions of ...”

Reason |: Performance

Code:
X = "this string i1s millions of characters..”
I y = X # this is fast!
State:
references objects
X — “this string is millions of ...”

———

Reason 2: Centralized Updates

)

alice = {"name":"Alice", "score":10, "age":30}
bob = {"name":"Bob", "score":8, "age":25}
winner = alilce

alice["age"] += 1
print("Winner age:", winner["age"])

State:
references objects
alice name | ~ | "Alice"
score | — -
bob 10
age | - 30
winner
name | © * "Bob"
score | /| ~~ g
age | 25

Reason 2: Centralized Updates

alice = {"name":"Alice", "score":10, "age":30}
bob = {"name":"Bob", "score":8, "age":25}
winner = alilce

* alice["age"] += 1
print("Winner age:", winner["age"])

State:
references objects
alice nameﬁ] "Alice"
score] ~
bob 10
Y=
winner
name | ©— * "Bob"
score | /| ~~ g
age | 25

Reason 2: Centralized Updates

alice = {"name":"Alice", "score":10, "age":30}
bob = {"name":"Bob", "score":8, "age":25}
winner = alilce

alice["age"] += 1
print("Winner age:", winner["age"])

prints 31, even though we didn’t
directly modify winner

State:
references objects
alice name |~ | "Alice"
Score | —
bob 9
NER0
winner dict
name | ~ | * "Bob"

score | /| ~~ g
age | 25

dict

Conclusion

New Types of Objects
: immutable equivalent as list
: make your own immutable types!
- choose names, don’t need to remember positions

References
: faster and allows centralized update
: mutating a parameter affects arguments

