
[220 / 319] Iteration 2

Readings:
Chapter 2 of Sweigart book

Chapter 6.4 of Python for Everybody

Due: Quiz3

Meena Syamkumar
Mike Doescher
Gurmail Singh

Learning Objectives Today

Nested loops tracing

Understanding break and continue
• Syntax
• Control flow
• Use cases

Nested loops tracing
• Interaction with break/continue

Chapter 7 of Think Python

Chapter 2 of Sweigart
(great recap so far)

http://automatetheboringstuff.com/chapter2/

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

Design Patterns (outside Programming)

[wikipedia]
somebody familiar with this
structure might skip around

1st

3rd

2nd

there are many similarities between
reading/writing code and essays

Design Patterns

i = 1
while i <= 30:
n = i * 2
print(n)
i += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Way 1: walk through in order (never a bad option)

Output
2
4
…

1 3i

2 4n

Design Patterns

i = 1
while i <= 30:
n = i * 2
print(n)
i += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Observation: loop will run with values of i of: 1 to 30

experienced coders will focus in
on everything about “i” first

because that is in the loop condition

Way 2: knowing that certain code is written again
and again, look for common patterns to break it down

Design Patterns

i = 1
while i <= 30:
n = i * 2
print(n)
i += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Observation: highlighted code runs 30 times, with i values of 1 through 30

n = 1 * 2
print(n)

n = 2 * 2
print(n)

n = 3 * 2
print(n)

...

n = 30 * 2
print(n)

Design Patterns

i = 1
while i <= 30:
n = i * 2
print(n)
i += 1

When you ask a programmer what a piece of code
does, what do they look at, and in what order?

Conclusion: the code prints 2, 4, 6, …, 58, 60

n = 1 * 2
print(n)

n = 2 * 2
print(n)

n = 3 * 2
print(n)

...

n = 30 * 2
print(n)

Output
2
4
6
8
…

56
58
60

Design Pattern 1: do something N times

i = 1
while i <= N:

i += 1

fill in with specifics here

i = 0
while i < N:

i += 1

fill in with specifics here

Option A

Option B

1, 2, 3, …, N

0, 1, 2, …, N-1

Design Pattern 2: do something with all data

i = 0
while i < N:

i += 1

fill in with specifics here

Functions:
count_rows()
get_population(index)
…

index 0

State Population Area
WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

index 1

Design Pattern 2: do something with all data

i = 0
while i < count_rows():
pop = get_population(i)

i += 1

fill in with specifics here

Functions:
count_rows()
get_population(index)
…

assumes we
use 0 for first row

State Population Area
WI 5.795 …

CA 39.54 …

MN 5.577 …

… … …

Design Pattern 3: do something until the end

while has_more():
data = get_next()

fill in with specifics here

People creating functions/modules for other programmers
to use will often have functions for checking if there is more

data and for getting the data one piece at a time

Today's Outline

Design Patterns

Worksheet
•Problem 1
•Problem 2

Break

Continue

Nesting

countdown
5
4
3
2

i j
1 1

2 1
2 2

3 1
3 2
3 3

Output
1
END
2
2
END
3
3
3
END

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

Don’t get too excited,
only the loops get a break!

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:
break

…

more code

at end, always go
back to condition check

True

False

Just like return immediately exits a function,

break immediately exits a loop

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:
break

…

more code

at end, always go
back to condition check

True

False

Usage: Commonly used when we’re searching through many things.
Allows us to stop as soon as we find what we want.

Demo: Prime Search Program

Goal: answer whether a range of numbers contains a prime

Input:
• Start of range
• End of range

Output:
• Yes or no

Examples:

14 to 16 => NO (because 14, 15, and 16 are all not prime)
10 to 12 => YES (because 11 is prime)

10 11 12 13 14 15 16 17

num
0
100
200
300
400

inside
sandwich
100
200
300
400
500

output
100?
YES
200?
YES
300?

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:
continue

…

more code

at end, always go
back to condition check

True

False

continue immediately stops current iteration and
goes back to the condition, without executing the "more code part,

potentially to start another iteration

Basic Control Flow

while CONDITION:

code after the loop…

code

…

if CONDITION:
continue

…

more code

at end, always go
back to condition check

True

False

Usage: commonly used to skip over values we want to ignore

Demo: Average Score

Goal: keep a running average of user-provided scores

Input:
• “q” for quit (keep running until this)
• a score in the 0 to 100 range

Output:
• Recompute average and print after each new number

Example:
enter a score (or q for exit): 50
avg is 50
enter a score (or q for exit): 110
bad input, skipping!
enter a score (or q for exit): q
exiting

Twist: use “continue” to skip over
inputs not in the 0 to 100 range

Today's Outline

Design Patterns

Worksheet

Break

Continue

Nesting

num
0
100
200
300
400

inside
sandwich
100
200
300
400
500

output
100?
YES
200?
YES
300?
400?
YES
500?
YES

Nested loops

where does this
jump back to?

while CONDITION_A:
more code
while CONDITION_B:

more code

if CONDITION_C:
continue

more code

more code

code outside any loop

Nested loops

continue and break
always apply to the

inner loop in Python

while CONDITION_A:
more code
while CONDITION_B:

more code

if CONDITION_C:
continue

more code

more code

code outside any loop

https://www.python.org/dev/peps/pep-3136/

https://www.python.org/dev/peps/pep-3136/

Nested loops

while CONDITION_A:
more code
while CONDITION_B:

more code

if CONDITION_C:
break

more code

more code

code outside any loop

https://www.python.org/dev/peps/pep-3136/

https://www.python.org/dev/peps/pep-3136/

Worksheet Problems

